
© 2013 IBM Corporation

Data Centric Computing for Internet Scale Enterprises

Yuqing Gao

Seetharami Seelam, Xavier Guerin, Wei Tan, Yanbin Liu,
Liana Fong, Paolo Dettori

IBM T. J. Watson Research Center

© 2013 IBM Corporation

© 2013 IBM Corporation

© 2011 IBM Confidential 4

"Big Data"? - Extracting insight from an immense volume, variety
and velocity of data, beyond what was previously possible

60%

Sources: IDC Digital Universe,

Manage the complexity of
multiple relational and non-
relational data types and
schemas

Variety

Streaming data and large
volume data movement Velocity

Scale from terabytes to
zettabytes Volume

 Organizations recognize they need powerful alternatives beyond traditional
SQL database technology to manage, process, and leverage Big Data for
Business advantage

- Traditional SQL databases store data in form of schemas which presents a challenge
when managing, processing, and analyzing unstructured data

- Big Data is about processing and storing as fast and as efficiently as possible

Information Overload

unstructured

© 2013 IBM Corporation

6 6 © 2013 IBM Corporation

Polyglot: the buzz

Java has ruled the enterprise application space for 15+ years but its
dominance is cracking giving birth to …

Polyglot: future programmers, future platforms

© 2009 IBM Corporation

IBM Research

The Perfect Storm?

7 IBM Confidential

Polyglot: SW/Platform

Emerging

Application

Domains

Computer

System

Changes in technology:

•Multicore/Concurrency

•Accelerators Changes in applications:

•Big Data

•Analytics

•Social, mobile

Changes in software/platform:

- Cross layer optimization

-Polyglot

8 8 © 2013 IBM Corporation

Outline

 Parallelization issue of data intensive enterprise java workloads on
multicore systems

 Design requirement of data centric computing systems

 Global secondary index for HBase (Hadoop Database)

 RDMA Enabled Ultra Low Latency Distributed Cache

 Polyglot runtime systems & challenges for benchmarking community

IBM Research

© 2012 IBM Corporation
9

Evaluation of Multi-Core Scalability Bottlenecks in
Enterprise Java Workloads (MASCOT’2012, X. Guerin, W.
Tan, Yanbin Liu, S. Seelam and P. Dube)

Motivations

 Multi-core designs are
replacing high-frequency
operating architectures

 Enterprise Java applications
not able to fully exploit multi-
core parallelism

 Evaluate scalability and
parallelization bottlenecks in
each layer of Java
application’s stack, provide
solutions and identify
commonalities

 Simply run known
benchmarks are not enough

–
SOABench, …

IBM Research

© 2012 IBM Corporation
10

Methodology

 Evaluate applications on a representative multi-core
machine:

– 16 core IBM Power7 system

 Conduct analysis using a top-down methodology based on
good-faith

– Each layer of rank n (topmost) of the software stack was profiled with the
hypothesis that each other layer n−1 . . . 1 is scalable and free of lock
contention until the last layer has been reached.

 Execute the chosen applications on the maximum available
number of cores (16) and increase the number of
application threads from 1 to 16

– Each application thread run on its own processor core.

– Compare with perfect scalability

• Perfect scalability entails linear throughput increase and constant latency up to
hardware limits

– Discover and analyze bottlenecks using tools including

• Light-Weight Java Trace tool
• WAIT and JProfiler,
• TProf and JProf …

IBM Research

© 2012 IBM Corporation
11

Evaluation Environment
 Hardware Environment: IBM POWER7-based blade

– 16 Power7 cores on two POWER7 sockets

– 256GB system memory

 Software Environment

– SUSE Linux Enterprise Server 11

– IBM’s J9 Java Virtual Machine

• Allocate sufficient amounts of memory heap to avoid garbage collection activity
(GenCon garbage collection policy)

 ILOG Business Rules Management System

 DayTrader PDF Document Generation

 IBM Cognos Chart Generation Service

 Many customers’ application programs
 …

Enterprise workload evaluated

IBM Research

© 2012 IBM Corporation
12

IBM Cognos Chart Generation Service

 IBM Cognos Business Intelligence (BI) is a software
suite for enterprise-scale reporting, analysis,
scorecarding and monitoring.

 Chart Generation Service (CGS) is a Cognos BI
component that produces charts and figures to be used
in various reports including PDF, Microsoft Excel and
HTML

 Benchmark: Generate a report that aggregates the
gross margin of a fictional company, categorized by
product line and geographic region, and displays the
result in two pie charts respectively.

– Query the Cognos database before hand to avoid database access
during the running of the benchmark

IBM Research

© 2012 IBM Corporation
13

CGS Benchmark Execution

 Arguments: 1) the number of
execution threads to run in
parallel; 2) the number of
execution iterations for each
thread

– A benchmark loop with the given
number of iterations is
instantiated for each thread.

– The loop creates a connection
with CGS, and sends an
execution request with the chart
specification

– Finally, the execution threads
gather the number of
Transactions Per Second (TPS)
as well as the average rule
execution latency for its run.

IBM Research

© 2012 IBM Corporation
14

CGS throughput and response time results

Identify a JVM-wide lock contention in
javax.swing.TimerQueue.
Replace class javax.swing.text.JTextComponent
with a non-swing class java.awt.font.TextLayout.
The fix is included in next CGS release.

IBM Research

© 2012 IBM Corporation
15

Evaluation of Enterprise Java workloads

 Cognos CGS: Discover
contention at JCL layer

 PDF: Discover contention
at Java Middleware, JCL
and Native JCLs layers

 ILOG: Discover contention
at Application and JVM
layers.

Layer Interplay:
- Application & JVM Layers

- JVM & OS & Application Layers

16 16 © 2013 IBM Corporation

Outline

 Parallelization issue of data intensive enterprise java workloads on
commercial multicore systems

 Design requirement of data centric computing systems

 Global secondary index for HBase (Hadoop Database)

 RDMA Enabled Cache

 Polyglot runtime systems & challenges for benchmarking community

© 2011 IBM Corporation
IBM CONFIDENTIAL

17

Big Data is about analyzing data at scale along the
dimensions of volume, velocity, variety, and veracity

D
a
ta

 S
c
a
le

D
a

ta
 S

c
a

le

Decision Frequency
Occasional Frequent Real-time

Traditional Data
Warehouse and Business
Intelligence

Integration

yr mo wk day hr min sec … ms s

Exa

Peta

Tera

Giga

Mega

Kilo

Feedback

Reactive Analytics

Reality

Fast
Observations Actions

History

Deep Analytics

Deep Predictions Hypotheses

Scale is not simply a matter of
deep vs. fast, but how deeply in
what time frame, which gives rise
to a whole spectrum of analytics

• Watson DeepQA for Jeopardy!
• Real-time Fleet Optimization System
• Real-time Consumer Engagements
• Low-latency B2B Interaction

© 2011 IBM Corporation IBM Confidential 18 18 18

Key trends for big data and analytics across industries and segments
(Financial, retail, government, fraud detection, healthcare, energy, etc.)

■ Internet and social media scale data

– Volume, velocity, variety, and veracity

– Variety: Unstructured and data from smarter devices play a role

– High throughput: large number of concurrent users/devices

■ Deep analytics on data at rest

– Finding of non-trivial relations

– Competitive advantage

■ Low-latency analytics on massive and rapidly generating data, i.e., data
in motion

– Timeliness in decision making

– Interactive: client facing

■ Use of operational and transactional data for analytics:

– Concurrency of high velocity data acquisition and analytics on same data source

• Need for low-latency analytics using transactional data, historical data, and
internet and social media data

– Timeliness of analytics to generate appropriate actions (e.g. promotion, fraud
detection, intelligence, etc.)

© 2011 IBM Corporation IBM Confidential

Requirements

■ Intelligent decision-making using: “Mobile+Cloud+Analytics+Big Data” in
context of transactions

–Analytics become embedded and pervasive

■ Desire to have a large, low latency, “In Memory” model
■ Focus on data parallelism with a synchronous view of data across cluster

■ Large byte addressable shared in-memory pool

■ Design Principles

– Moving the compute engines into the Data

– Making sure the DRAMs have the right Data

• Effectively a super large cache of the applications usage of Big Data

– More Direct Addressing of Data

• Minimal indirect addressing of Data

– Fewer Copying/Buffering and Replication of Data

– Making the large amount of Big Data, Fast, Easy to Access and Easy to Manage

– Focus on SW, use off-the-shelf HWs (before new HW is built)

20 20 © 2013 IBM Corporation

Outline

 Parallelization issue of data intensive enterprise java workloads on
commercial multicore systems

 Design requirement of data centric computing systems

 Global secondary index for HBase (Hadoop Database)

 RDMA Enabled Cache

 Polyglot runtime systems & challenges for benchmarking community

© 2011 IBM Corporation

IBM CONFIDENTIAL
21

Categories of NoSQL Use-case Patterns

■ Rapid development of web-scale solutions
– Chosen for flexible schema
– Web-scale apps, high-performance, read-only, not complex
– Short life or plan to replace frequently,
– New applications demand rapid iteration

■ Scalability for web-apps
– High ingest rates
– Ratio of value to number of records is low: No cleansing, no

ETL, no Load on ingest
– Analyze the data where it lands
– Semi-structured data that can be grouped on ingest

■ Scalable Analytics
– Scalable fault tolerant framework for storing and processing

MASSIVE data sets (Hadoop)
– Lower cost
– Online update capability
– Gives you point access to data in MR, not just sequential

access
– Records stored in distributed file system
– Ratio of value to records is low

■ Scalability for a class of current RDBMS apps: (TaoBao)

© 2012 IBM Corporation 22

Global secondary index for HBase (to appear in IBM J of R&D, by L
Fong, W Tan, et al)
 Motivation: NoSQL stores and HBase (aka., Hadoop database)

 NoSQL is emerging -- “to be used widely during the next 5 years” [Gartner]
– Pros:

• Flexible schema: table, graph, object, K/V, document. On size on longer fits all.

• Configurable consistency to deal with Internet workload

• Scale-out horizontally on commodity HW; or hosted on cloud for easy use.

– Cons: limited API, less mature: not “enterprise-ready” (from our SWG partner)
 Research challenges

– Scalability, consistency, index, ACID, …

 Categories

Type Feature Example

Key/value key-object mapping Dynamo (Amazon), IBM WXS

Document XML, JSON, BSON docs MongoDB

Graph social relations, road maps neo4j

Tabular (column) Table-like, extensible schema,

convergence of operation and analytics

BigTable family (HBase,

Cassandra)

Diff-Index Challenge System Performance Motivation

© 2012 IBM Corporation 23

Challenge: HBase has no secondary index

 Index: data structure for queries on non-primary attributes; well studied in RDBMS
– Example (Yelp.com): reviews by users to business, with a star ratings

– Queries need index: list all reviews of a business, user, or star

 Gap: HBase has no secondary index; query w/ table scan via MapReduce
– Not acceptable for ad hoc queries

ReviewID Text Stars UserID BusinessID

R00001 … 5 U01 B001

… … … … …

Diff-Index Challenge System Performance Motivation

Need index on
User, Star and

Business

Millions of rows

© 2012 IBM Corporation 24 IBM Confidential

Index maintenance

1 LSM
Tree

3 distr.
systems

2 index

1. Log Structured Merge tree: a reviving interest in it
a) Write workload increasing; 10~20% > 50% (by Yahoo!)
b) With high insertion rate: click streams, sensors, mobile…
c) With non in-place update and slow read, index update can be slow

2. Index with high insertion rate
a) Solutions for B+ trees and used in RDBMS, e.g., deferred index
b) No approach systematically tackle this issue in LSM tree

3. Distributed systems
a) Distributed index maintenance needs coordination
b) Examine performance/consistency tradeoff

Solution:
differentiated secondary Index (Diff-Index) for HBase, a global index
scheme on LSM-Tree with balanced performance

Diff-Index Challenge System Performance Motivation

© 2012 IBM Corporation 25 IBM Confidential

Diff-Index system: global, server-managed index with configurable schemes

Index Table

async msg queue

Coprocessors

AsyncObserver

Session cache

Index Utility (create,
destroy, bulk load,

cleanse)

getByIndex API

Client Library

TPC-W

table

YCSB 0.14

Regions

SyncFullObserver

SyncInsertObserver

Data Table

Async

Sync

BigSQL/BigInights

DDL, Catalog,
query engine …

DDL: define indexes
Catalog: store index def.
Query engine: use index

•Index update at diff scale: ad hoc and batch
•Composite index
•Different levels of consistency

Client query API;
index mgt

Function and
performance
testing

index put
failure

Regions

Diff-Index Challenge System Performance Motivation

© 2012 IBM Corporation 26 IBM Confidential

Effect of adding indexes in HBase

Query by index is much faster (100-1000x) and grows modestly with data size

•Parallel table scan: scan the
regions in parallel

•Index + base: combine base and
index for a query

•Index covering: index itself can
serve the query

Diff-Index Challenge System Performance Motivation

0,01

0,1

1

10

100

1000

1 M 5M 10M 15M 20M

q
u

e
ry

 l
a

te
n

cy
 (

se
c)

number of records (in million)

single exact mach query

parallel table scan index +base index covering

© 2012 IBM Corporation 27 IBM Confidential

Performance of index update and read

0

10

20

30

40

50

60

1 2 4 8 16 32

la
te

n
cy

 (
m

s)

concurrent clients

read latency

1 sync-full

2 sync-insert

3 async

Update slow, Read fast

Update fast, Read slow

U/R fast, inconsistent

Diff-Index Challenge System Performance Motivation

You can trade read for update,
or vice versa

© 2012 IBM Corporation 28

Outline

 Parallelization issue of data intensive enterprise java workloads on commercial multicore

systems

 Design requirement of data centric computing systems

 Global secondary index for HBase (Hadoop Database)

 RDMA Enabled Cache

 Polyglot runtime systems & challenges for benchmarking community

29 29 © 2013 IBM Corporation

WXS RDMA-Feature for Internet Scale and High
Performance Enterprise Computing

- (IMPACT’2013, Yuqing Gao, Xavier Guerin, Tiia
Salo)

30 30 © 2013 IBM Corporation

Need for reliable speed

0%

-2%

-4%

-6%

-8%

-10%

-12%

-14%

-16%

-18%

Page views Conversions Customer Satisfaction

-11%

-7%

-16%
• Lost revenues

• Brand damage

• More support calls

• Increased costs

Internet response time challenges impact the
revenue and customer satisfaction negatively

1. “The Performance of Web Applications: Customers Are Won or Lost in One Second,” Bojan Simic, Aberdeen Group, November 2008

2. Source: Internet World Stats, Usage and Population Statistics, www.internetworldstats.com/stats.htm, December 22, 2010

http://www.internetworldstats.com/stats.htm

31 31 © 2013 IBM Corporation

What is RDMA? Which network fabrics support RDMA?

 Remote Direct Memory Access (RDMA)
• Direct access from the memory of one computer into that of another without

involving either one's operating system InfiniBand
• The original lossless low-latency RDMA fabric
• 10/40/56Gb/s (e.g. Mellanox® ConnectX®, Connect-IB™)

 RDMA over Converged Ethernet (RoCE)
• InfiniBand’s RDMA layer ported to Ethernet
• 10/40Gb/s (e.g. Mellanox ConnectX)

 Fabric latencies in <1µs ballpark

 Up to 100km distance (e.g. Mellanox MetroX™)
• Speed of light may become a significant factor after a few miles

32 32 © 2013 IBM Corporation

What are the common RDMA usage patterns?

 “Faster pipe” - the most common approach today

• Send-receive semantics
1. Sender copies data into a send-buffer
2. RDMA transfer from the send-buffer to the receive-buffer
3. Receiver copies data from the receive-buffer

• Pros: Easy - a low hanging fruit that often can be fitted into
 existing apps without major rework

• Cons: Involves CPU and copying - may not realize RDMA’s full potential

 “Shared memory” - mostly used in HPC

• Pointer semantics
1. A application hands out a set of remote pointers to it’s data
2. Peers directly read and write the data at the end of the

pointers using RDMA

• Pros: Extreme, near wire-speed performance

• Cons: Difficult - usually requires writing the
 app specifically for RDMA

Sender Receiver

App App

App

App

33 33 © 2013 IBM Corporation

Which applications can leverage RDMA?

Three levels of RDMA exploitation

 RDMA-optimized OS level interfaces

• Enable the bulk of the applications as-is with

• A low hanging fruit with moderate overall
performance improvement

• e.g. Sockets over RDMA (JSoR)

 RDMA-optimized applications

• Applications that are designed for RDMA from
ground up

• An expensive approach with extreme performance

• e.g. Trading applications

App App App

Sockets over RDMA

App
Memory

Server
Memory

App
Memory

34 34 © 2013 IBM Corporation

Which applications can leverage RDMA?

Three levels of RDMA exploitation

 RDMA-optimized OS level interfaces

• Enable the bulk of the applications as-is with

• A low hanging fruit with moderate overall
performance improvement

• e.g. Sockets over RDMA

 RDMA-optimized application level interfaces

• Enable critical applications for scale-out

• Substantial improvement without application code
modification

• e.g. WXS DynaCache API for caching a wide
range of web application objects

 RDMA-optimized applications

• Applications that are designed for RDMA from
ground up

• An expensive approach with extreme performance

• e.g. Trading applications

App App App

Sockets over RDMA

WXS

App
Server

DynaCache
API

App
Server

DynaCache
API

App
Server

DynaCache
API

App
Server

DynaCache
API

App
Server

DynaCache
API

App
Server

DynaCache
API

App
Server

DynaCache
API

App
Server

DynaCache
API

App
Server

DynaCache
API

App
Memory

Server
Memory

App
Memory

35 35 © 2013 IBM Corporation

Remote pointers & one-sided RDMA

 A server can export a remote pointer that refers to a data record in
a pinned & registered server memory page

 One-sided RDMA operations allow the client to directly access the
remote record referenced by the pointer
• “Remote control” the server RNIC to perform DMA to/from a memory

location specified by the pointer

• No server-side code or CPU involvement - zero server CPU utilization

 Very fast, near wire-speed remote access
• Read / overwrite the remote record in single-digit microseconds

RDMA NIC

Memory

Page ..FA

105,’Big Gadget’, 11

104,’Small Gadget’, 7

RDMA NIC

Memory

Page ..0A

105,’Big Gadget’, 11
…0F0

…12C

Page ..F9
..FA ..12C

Client Server

RDMA read
RDMA write D

M
A

D
M

A

36 36 © 2013 IBM Corporation

WXS and RDMA contd.

 Ultra-low latency
• Substantially shorter path to shared data

• Completely bypass the OS and network stacks

Memory C off
heap

OS

Java

data

NIC

map

data

NIC

WXS RDMA client WXS RDMA server

D
M

A
 D

M
A

c
o
n
tr

o
l
p
a
th

d
a
ta

 p
a
th

OS

Java / C

data

map
serializat

ion

OS
sockets

tcp/ip

driver

NIC

Java / C

data

serializat
ion

io

OS
sockets

tcp/ip

driver

NIC

Conventional
client

c
o
p
y
 c

o
p
y

c
o
p
y
 c

o
p
y

io

Conventional
server

WXS and RDMA preserve the near-local access speed
when scaling out

37 37 © 2013 IBM Corporation

Experiment setup @ Lab
environment

Java™ clients
• WXS over RoCE
• Redis & Memcached over TCP

CRUD workload
• C10% R60% U20% D10%

Payload 256B (w/ serialization)

Single server; 1-16 clients

10Gb Ethernet w. RoCE

Experimental results

CRUD throughput

• WXS reaches 1.6 million
requests per second

• WXS clients can drive 8.5X-10X
more work into the server

CRUD latency

• WXS latency < 20µs (14µs avg.)

• 90% reduction

Example: WXS RDMA vs. Redis & Memcached

10X throughput increase with 90% latency reduction

Throughput

Clients

R
e
q
u
e
s
ts

 p
e
r s

e
c
o
n
d

 1 4 8 12 16

Latency
Latency

Clients

L
a
te

n
c
y
 µ

s

 1 4 8 12 16

© 2013 IBM Corporation

38 38 © 2013 IBM Corporation

L
a
te

n
c
y
 n

s

Experiment setup @ Lab
environment

Java client
• WXS over IB

CRUD workload
• C10% R60% U20% D10%

Payload 256B (w/ serialization)

Single server; 16-64 clients

40Gb InfiniBand

Experimental results

Throughput

• CRUD: 4.5 million requests/s

• Read-only: 6 million requests/s

Latency

• CRUD: 25µs avg.

• Read-only: 17µs avg.

Example: WXS RDMA scale-out

Near-linear scale-out to 6 million reads/s with a single server!

R
e
q
u
e
s
ts

 p
e
r s

e
c
o
n
d

© 2013 IBM Corporation

Clients

Throughput

Clients

Latency

39 39 © 2013 IBM Corporation

WXS RDMA scale-out: C client

C client
 CRUD workload
• C10% R60% U20%

D10% Payload 256B
Single server; 16-64
clients
40Gb InfiniBand

Experimental results
Throughput

• CRUD: 5.9 million
requests/s

• Read-only: 11.5 million
requests/s Latency

• CRUD: 17µs avg.
• Read-only: 4.3µs avg.

40 40 © 2013 IBM Corporation

WXS RDMA Feature

 Addresses the increasing scale-out pressures

• Vast numbers of mobile users, Internet of Things, the end of CPU
performance scaling

 Enables a new breed of scale-out systems

• Break the scale-out barriers with near-local access speed for remote
data

 Allows enterprises to

• Envision new, game-changing applications that take advantage of
ultra-fast shared state and memory

• Do more with less: low carbon footprint for high-velocity & high-
volume caching applications

WXS RDMA - A True Game Changer

41 41 © 2013 IBM Corporation

WXS RDMA scenarios

 Focus on DynaCache scenarios to improve Web application
latencies
• Content that is expensive to render or retrieve

• Images, pages, page fragments, reference data, search results

 Break the latency constraints that force to hold the caches locally
• RDMA’s near-local access speed allows for remoting local data

 Eliminate the secondary latencies caused by local caching
• Stop slowing down the applications by eating local JVM heap-memory

• Stop wasting local CPU cycles either when each node renders the same
content...or when the nodes replicate between one another

RDMA

Remote
cache

JVM JVM JVM JVM

Heap Heap Heap Heap

App App Local
cache

Local
cache

App App

Example

• 2/3 of JVM’s
memory used for
local cache (16GB)

• Cache duplicated
across 48 JVMs

• Only one instance of
the cache

• Increased performance
from more memory
and CPU for the apps

• Handle more web
traffic with less
hardware

42 42 © 2013 IBM Corporation

Example: WXS RDMA & WebSphere Commerce

 Experiment setup @ Lab environment
• WebSphere V7 64 bit, WebSphere Commerce V7 64 bit

• Rendered products held in a local DynaCache vs. remote WXS

• Cache size 4+ GB

• 300-700 concurrent active users

 Experimental results
• 40%- 50% end-user response time reduction for 90th percentile
 (random product category browse)

• Increased end-to-end application throughput

RDMA

WXS

JVM

Heap

DynaCache

Commerce
app

JVM

Heap

DynaCache

Commerce
app

JVM

Heap

Commerce
App

JVM

Heap

Commerce
App

Faster response times with less hardware!

43 43 © 2013 IBM Corporation

Ultra Performance - Caching Redefined!
 Exploring next gen distributed caching technologies

architected from ground up to exploit RDMA

 Aim for near-local speed for remote access
• Single digit microsecond read access latency
 (vs. industry state-of-the-art > 0.3 milliseconds)

 Scale up & out to Internet and PetaByte Scale
• Target over a million requests per second throughput per

an individual server (vs. industry state-of-the-art <200k/s)

Do more with less!
 Substantially reduce TCO and carbon footprint

 Accelerate latency-critical enterprise applications

 Highly contextual and personalized applications
• Commerce, Banking, Travel, Information services

 Massive scale edge-caching scenarios
• ISP, Mobile, Commerce, Portal

 Internet Scale scenarios
• Telco/Mobile, Internet of Things, Smarter City

 Big Data & Instant Analytics
• Commerce, Mobile, Banking, Credit Card

WXS and RDMA - Summary

100k 500k 1M

100k

500k

1M

Requests / s

R
e

sp
o

n
se

s / s

WXS RDMA Feature

Industry state-of-the-art

Server saturation point

10

Latency µs (logarithmic scale)

100

1000

30-100X

WXS
RDMA-
Feature

Industry
state-of-
the-art

© 2012 IBM Corporation 44

Outline

 Parallelization issue of data intensive enterprise java workloads on commercial multicore

systems

 Design requirement of data centric computing systems

 Global secondary index for HBase (Hadoop Database)

 RDMA Enabled Cache

 Polyglot runtime systems & challenges for benchmarking community

45 45 © 2013 IBM Corporation

Polyglot: the buzz

Future programmer: java a polyglot

Java has ruled the enterprise application space for 15+ years but its
dominance is cracking giving birth to …

© 2012 IBM Corporation 46

Top Languages on Github (Cloud and Mobile)

Web application projects in Github

JavaScript is by far the most popular

47 47 © 2013 IBM Corporation

Future Application Platforms

Systems of Record

HTTP Notification
Data sync

Continuous Client
Experience

ERP
Legacy

DB

CRM HR

Future platforms are polyglot

Cloud-centric applications require …

CloudOE Runtimes & Frameworks

Erlang Ruby
Java

Tomcat
Node.js PHP

Pytho
n

48 48 © 2013 IBM Corporation

Future Applications

What does a polyglot application looks like?

Imaginary Recommendation Web Application

Web UI

(HTML5/Javas

cript)

Web App

(Node.js)
Enterprise

Logic (Java)

Twitter, FB

Social services

(PHP)

Google
Maps(Ruby)

Blue
Pages(Node.j

s)

Yelp
Ratings(PHP)

Neo4J MongoDB HBASE RDBMS

Recommendation

(Python)

49 49 © 2013 IBM Corporation

An Integrated Polyglot Platform

• Existing PaaS’s state-of-the-art
 Excellent for simple web apps but anything beyond

 Difficult to bring new services, provide QoS, enforce SLA, enable policy driven
execution, provide visibility, traceability, governance, etc.

• Develop an elastic, scalable, language-independent runtime platform for
multi-language runtimes

• Provide common functions as services via the runtimes container

• Design for elasticity, scalability and resilience

• Provide standard interfaces to platform infrastructure components for
scaling, logging, metering, deployment and optimizations

• Our research work will be the foundation for next generation cloud
application platform: 1. initially targeted for Node.js applications, 2. with
extensions for other languages/frameworks

