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SOA-based
systems

among interacting software E:::tl:ﬁnl

components called services.

® Services: self-describing,
stateless, modular applications e
that are distributed across the e
Web and which provide ‘

functionalities and are described
by quality attributes (QoS). e °
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® SOA-based systems: systems
that implement Service
Oriented Architecture, i.e., an
architectural style whose goal is
to achieve loose coupling
among interacting software
components called services.

SOA-based
systems

Services ] [ E:;:t\gli_gn
® Execution system:
® network of virtual machines; ! 9
e distributed computational @ O
resources; l | ° : /\/\/
® input: streams of requests; i
&z QE

® output: system performance,
e.g., latency.
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Problem background

Resource re-allocation

® The execution system evolves in time because of:
D> non-stationary streams of requests;

> failures or system’s modifications.

n n+1 n+2 Failure

® Hence, there is a need to propose an adaptive approach for
resource allocation.

® Resource re-allocation: if a change in the input (or output) is
reported, then calculate new resource allocation.
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Change detection problem

Overview

® Change detection: identifies
changes in the probability
distribution of a stochastic
process.
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Frequentist approach
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Change detection problem

Overview

® Change detection: tries to
identify changes in the
probability distribution of a
stochastic process.

® Two kinds of changes:
® gradual;

® abrupt.

@ Statistical change detection:

e frequentist approach:
distribution estimation and
comparison using
dissimilarity measures;

e Bayesian approach: all
quantities are random
variables.
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Bayesian approach

Likelihood functions for models

Assume that DX = {x,,_r11,...,X,} are examples within shifting
window of size L.
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Assume that DX = {x,,_r11,...,X,} are examples within shifting
window of size L.

1. If there is no context change in D%, then we say that data are
generated from a model M and its likelihood function is as follows

p(Dy;| Mo, 89) = p(Dy;|60) (1)

where 8y — parameters of M.

2. If there is one context change in DL at ¢ < n, then we say that data
are generated from a model M; and its likelihood function is as
follows

p(Dy| M1, 601,t) = p(Df~"|01) p(D;;~"167) ()

where 0, = (0] 03)T — parameters of M, 07 are parameters for
partition before context change, and 9% — parameters after context
change.

9/23



Bayesian approach

Model evidence

In order to select one model which is more probable to generate observed
data we need to calculate model evidences. The model evidence of My
can be calculated as follows

10/23



Bayesian approach

Model evidence

In order to select one model which is more probable to generate observed
data we need to calculate model evidences. The model evidence of M,
can be calculated as follows

p(DE|Mo) = / P(DE[ Mo, 8) p(B0Mo) Ao, 3)

where p(0¢| M) — a priori probability distribution of parameters.

10/23



Bayesian approach

Model evidence

In order to select one model which is more probable to generate observed
data we need to calculate model evidences. The model evidence of M,
can be calculated as follows

p(DE|Mo) = / p(DE[ Mo, 85) (B0 Mo) d6o, 3)

where p(8¢| M) — a priori probability distribution of parameters. Next,
the model evidence of M is the following (using the independence of
61,071

p(DEIM:) = [ p(DEIM1,01,1) p(6}| M1) x
x p(63|My) p(t|My) 6 dt, (4)

where p(81| M), p(87| M), p(t|M1) — a priori probability distributions
of parameters.
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Bayesian approach

Model evidence approximation

In order to calculate model evidences of My and M7 we make the
following assumptions:

® the a priori probability distributions of 8y and 6 are taken to be
non-informative;

® the context change occurs in the middle of the shifting window, i.e.,
n — [1L], hence the a priori probability distribution of ¢ is a Dirac

delta function in the point n — [$L].

For such assumptions we can approximate the model evidence by the
Bayesian Information Criterion (BIC)

I K
Inp(Dy| M) ~ Inp(Dy|0) - 7 In L, (5)

where 0 is the maximum likelihood estimator of 6.
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Bayesian approach

Bayes factor

To compare both models, we calculate the Bayes factor (assuming equal
probabilities over models):

= p(DE[ M)’ (©)

By In(Byp)  Evidence in favor of M,

1-3 0-1.1 Weak
3—-10 1.1-2.3 Substantial
10—-100 2.3—4.6 Strong

> 100 > 4.6 Decisive
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Algorithm description

Algorithm 1: Change detection using approxi-
mated Bayes factor
Input : D, L, Mg, M1
Output: Moments of context change 71,...,7ar
1 n<—1m<+—0, 71 +—0;
2 while n < card{D} do

3 Calculate Inp(DL|Mp) and Inp(DE| M) ;
4 Calculate In Bio;

5 if In B1g > o then

6 if ((n— [L/2]) —Tm) > [L/2] then
7 m:=m+ 1;

8 Tm <— n — [L/2];

9 end
10 end
11 n:=n+1;

12 end
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Simulator

Computational unit

Virtual machine

Web service

Sink

Structure
Computational
/ unit
Request
generator Scheduler
\ Computational
unit

Web service

Virtual machine

Web service

Web service
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Details

® Streams of requests are generated with Poisson process.
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Simulator

Details

Streams of requests are generated with Poisson process.

Computational nodes are represented by web servers with
processors as computational resources.

Two virtual machines are situated on each of servers.

Each of two web servers in the model uses 8 processors, which are
assigned to virtual machines in following way:

® 6 and 2 processors are respectively used by first and second virtual
machine (first server).

® 4 and 4 processors are respectively used by first and second virtual
machine (second server).

Processing delays for web servers are equal 0.0004 seconds and for
virtual machines are equal 0.0008 seconds

According to the

| report: Lite Te ies, Web server p e it Lit 2.0 vs..
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® Performance of real data processing services implemented in PlaTel
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Simulator
Modelling Web services

Performance of real data processing services implemented in PlaTel
was modelled: Naive Bayes, Logistic Regression, J48 and
Multilayer Perceptron.

Processing time for each of selected services was modelled with
triangular distribution.

The values parameters for distributions (minimum, maximum and
average value) for each of services were estimated using soapUI
tool.

Following resource allocation of web services were proposed:

e Multilayer Perceptron - total number of 10 processors.
e [ogistic Regression total number of 10 processors.

® J48 total number of 6 processors.

e Naive Bayes total number of 4 processors.
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Description
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problem.
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Experiment

Description

® The aim of the experiment is to compare the performance of
frequentist approaches with Bayesian approach for change detection
problem.

® Following dissimilarity measures were considered:

Bhattacharyya
Kullback-Leibler
Lin-Wong

modified Lin-Wong

® Average latency in request responses was considered as a quality
rate for entire system.

® The simulation model was implemented in discrete events simulation
environment Arena.

® Algorithms for change detection were implemented in Matlab.
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Experiment

Considered scenarios (1)

1. Slight context change. The
context is changed periodically (5
times per simulation) and change is
gained by increasing the intensity
parameters of Poisson process three
times.

2. Significant context change. The
context is changed periodically (5
times per simulation) and change is
gained by increasing the intensity
parameters of Poisson process six
times.
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Experiment

Considered scenarios (2)

3. Processors failure (anomaly).
Anomaly is gained by failure of 4
processors on first virtual machine.
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Experiment

Results for slight context change simulation

Correctly Incorrectly
detected detected

Measure (max. 5)
Bhattacharyya

(L=25 06=02) 3.2 0.2
Kullback-Leibler

(L=250=1) 3.8 0.8
Lin-Wong

(L =25, 0=0.15) 2.8 0.7
mod. Lin-Wong

(L =25, 0 =0.02) 2.9 0.9

Bayesian approach
(L = 25) 3 0.2
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Experiment

Results for significant context change simulation

Correctly Incorrectly
detected detected

Measure (max. 5)
Bhattacharyya

(L=25 06=02) 4.6 0.1
Kullback-Leibler

(L=250=1) 4.8 0.2
Lin-Wong

(L =25, 0=0.15) 4.6 0.3
mod. Lin-Wong

(L =25, 0 =0.02) 4.6 0.2

Bayesian approach
(L = 25) 5 0
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Experiment

Results for processors failure simulation

Correctly Incorrectly
detected detected

Measure (max. 2)
Bhattacharyya

(L=25 06=02) 1 0.3
Kullback-Leibler

(L=250=1) 0.7 0.3
Lin-Wong

(L =25, 0=0.15) 11 0.1
mod. Lin-Wong

(L =25, 0 =0.02) 1 0.1

Bayesian approach
(L = 25) 1.1 0.1
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Discussion

® Most of changes were successfully detected using frequentist and
Bayesian approaches.
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® Most of changes were successfully detected using frequentist and
Bayesian approaches.

® The lowest number of detected changes were gained for Slight
context change and Processors failure simulation scenarios.

® Bayesian approach performed slightly better for Significant context
change and Processors failure (anomaly) scenarios.

® The number of incorrectly detected changes using Bayesian model
was the lowest for all considered scenarios.

@ The best results for slight context changes were gained using
Bhattacharyya measure.

@ Bayesian approach, in comparison to the frequentist approach, does
not demand defining additional parameters beside shifting window's
size.
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