
On-line Bayesian Context Change Detection in Web
Service Systems

Maciej Zięba, Jakub M. Tomczak

HotTopiCS 2013

maciej.zieba@spwr.wroc.pl

Prague, 20.04.2013

maciej.zieba@spwr.wroc.pl

Agenda

1. Problem background

2. Change detection problem statement

3. Approaches for solving the problem

4. Bayesian Model

5. Algorithm for change detection

6. Simulation environment

7. Results and discussion

2/23

Problem background
SOA-based systems

 SOA-based systems: systems
that implement Service
Oriented Architecture, i.e., an
architectural style whose goal is
to achieve loose coupling
among interacting software
components called services.

SOA-based
systems

Services Execution
system

3/23

Problem background
SOA-based systems

 SOA-based systems: systems
that implement Service
Oriented Architecture, i.e., an
architectural style whose goal is
to achieve loose coupling
among interacting software
components called services.

 Services: self-describing,
stateless, modular applications
that are distributed across the
Web and which provide
functionalities and are described
by quality attributes (QoS).

SOA-based
systems

Services Execution
system

3/23

Problem background
SOA-based systems

 SOA-based systems: systems
that implement Service
Oriented Architecture, i.e., an
architectural style whose goal is
to achieve loose coupling
among interacting software
components called services.

 Execution system:
 network of virtual machines;
 distributed computational

resources;
 input: streams of requests;
 output: system performance,

e.g., latency.

SOA-based
systems

Services Execution
system

3/23

Problem background
Resource allocation problem

 In order to maintain the
performance of an execution
system at a satisfactory (or
given) level the following
decisions are mainly be made:

 migration of services;

 computational resources
allocation.

4/23

Problem background
Resource allocation problem

 In order to maintain the
performance of an execution
system at a satisfactory (or
given) level the following
decisions are mainly be made:

 migration of services;

 computational resources
allocation.

Service
migration

4/23

Problem background
Resource allocation problem

 In order to maintain the
performance of an execution
system at a satisfactory (or
given) level the following
decisions are mainly be made:

 migration of services;

 computational resources
allocation.

??

?

??

Resources

4/23

Problem background
Resource re-allocation

 The execution system evolves in time because of:

B non-stationary streams of requests;

B failures or system’s modifications.

 Hence, there is a need to propose an adaptive approach for
resource allocation.

 Resource re-allocation: if a change in the input (or output) is
reported, then calculate new resource allocation.

5/23

Problem background
Resource re-allocation

 The execution system evolves in time because of:

B non-stationary streams of requests;

B failures or system’s modifications.

n n+1 n+2

 Hence, there is a need to propose an adaptive approach for
resource allocation.

 Resource re-allocation: if a change in the input (or output) is
reported, then calculate new resource allocation.

5/23

Problem background
Resource re-allocation

 The execution system evolves in time because of:

B non-stationary streams of requests;

B failures or system’s modifications.

n n+1 n+2 Failure

 Hence, there is a need to propose an adaptive approach for
resource allocation.

 Resource re-allocation: if a change in the input (or output) is
reported, then calculate new resource allocation.

5/23

Problem background
Resource re-allocation

 The execution system evolves in time because of:

B non-stationary streams of requests;

B failures or system’s modifications.

n n+1 n+2 Failure

 Hence, there is a need to propose an adaptive approach for
resource allocation.

 Resource re-allocation: if a change in the input (or output) is
reported, then calculate new resource allocation.

5/23

Problem background
Resource re-allocation

 The execution system evolves in time because of:

B non-stationary streams of requests;

B failures or system’s modifications.

n n+1 n+2 Failure

 Hence, there is a need to propose an adaptive approach for
resource allocation.

 Resource re-allocation: if a change in the input (or output) is
reported, then calculate new resource allocation.

5/23

Change detection problem
Overview

 Change detection: identifies
changes in the probability
distribution of a stochastic
process.

 Two kinds of changes:

 gradual;
 abrupt.

 Statistical change detection:
 frequentist approach:

distribution estimation and
comparison using
dissimilarity measures;

 Bayesian approach: all
quantities are random
variables.

6/23

Change detection problem
Overview

 Change detection: identifies
changes in the probability
distribution of a stochastic
process.

 Two kinds of changes:

 gradual;
 abrupt.

 Statistical change detection:
 frequentist approach:

distribution estimation and
comparison using
dissimilarity measures;

 Bayesian approach: all
quantities are random
variables.

6/23

Change detection problem
Overview

 Change detection: identifies
changes in the probability
distribution of a stochastic
process.

 Two kinds of changes:
 gradual;

 abrupt.

 Statistical change detection:
 frequentist approach:

distribution estimation and
comparison using
dissimilarity measures;

 Bayesian approach: all
quantities are random
variables.

Gradual
change

6/23

Change detection problem
Overview

 Change detection: identifies
changes in the probability
distribution of a stochastic
process.

 Two kinds of changes:
 gradual;
 abrupt.

 Statistical change detection:
 frequentist approach:

distribution estimation and
comparison using
dissimilarity measures;

 Bayesian approach: all
quantities are random
variables.

Gradual
change

Abrupt change Abrupt change

6/23

Change detection problem
Overview

 Change detection: identifies
changes in the probability
distribution of a stochastic
process.

 Two kinds of changes:
 gradual;
 abrupt.

 Statistical change detection:
 frequentist approach:

distribution estimation and
comparison using
dissimilarity measures;

 Bayesian approach: all
quantities are random
variables.

Gradual
change

Abrupt change Abrupt change

6/23

Change detection problem
Overview

 Change detection: identifies
changes in the probability
distribution of a stochastic
process.

 Two kinds of changes:
 gradual;
 abrupt.

 Statistical change detection:
 frequentist approach:

distribution estimation and
comparison using
dissimilarity measures;

 Bayesian approach: all
quantities are random
variables.

Statistical
inference

Change
detection

Data

Moments of change in
streams of requests

6/23

Change detection problem
Overview

 Change detection: identifies
changes in the probability
distribution of a stochastic
process.

 Two kinds of changes:
 gradual;
 abrupt.

 Statistical change detection:
 frequentist approach:

distribution estimation and
comparison using
dissimilarity measures;

 Bayesian approach: all
quantities are random
variables.

Statistical
inference

Change
detection

Data

Moments of change in
streams of requests

6/23

Frequentist approach

Time

Estimation Estimation

Shifting window 1 Shifting window 2

Dissimilarity
measure

7/23

Change detection problem
Overview

 Change detection: tries to
identify changes in the
probability distribution of a
stochastic process.

 Two kinds of changes:
 gradual;
 abrupt.

 Statistical change detection:
 frequentist approach:

distribution estimation and
comparison using
dissimilarity measures;

 Bayesian approach: all
quantities are random
variables.

Statistical
inference

Change
detection

Data

Moments of change in
streams of requests

8/23

Bayesian approach
Likelihood functions for models

Assume that DLn = {xn−L+1, . . . ,xn} are examples within shifting
window of size L.

1. If there is no context change in DLn , then we say that data are
generated from a model M0 and its likelihood function is as follows

p(DLn |M0,θ0) = p(DLn |θ0) (1)

where θ0 – parameters of M0.
2. If there is one context change in DLn at t < n, then we say that data

are generated from a model M1 and its likelihood function is as
follows

p(DLn |M1,θ1, t) = p(DL−n+tt |θ11) p(Dn−tn |θ21) (2)

where θ1 = (θ
1
1 θ
2
1)
T – parameters of M1, θ11 are parameters for

partition before context change, and θ21 – parameters after context
change.

9/23

Bayesian approach
Likelihood functions for models

Assume that DLn = {xn−L+1, . . . ,xn} are examples within shifting
window of size L.

1. If there is no context change in DLn , then we say that data are
generated from a model M0 and its likelihood function is as follows

p(DLn |M0,θ0) = p(DLn |θ0) (1)

where θ0 – parameters of M0.

2. If there is one context change in DLn at t < n, then we say that data
are generated from a model M1 and its likelihood function is as
follows

p(DLn |M1,θ1, t) = p(DL−n+tt |θ11) p(Dn−tn |θ21) (2)

where θ1 = (θ
1
1 θ
2
1)
T – parameters of M1, θ11 are parameters for

partition before context change, and θ21 – parameters after context
change.

9/23

Bayesian approach
Likelihood functions for models

Assume that DLn = {xn−L+1, . . . ,xn} are examples within shifting
window of size L.

1. If there is no context change in DLn , then we say that data are
generated from a model M0 and its likelihood function is as follows

p(DLn |M0,θ0) = p(DLn |θ0) (1)

where θ0 – parameters of M0.
2. If there is one context change in DLn at t < n, then we say that data

are generated from a model M1 and its likelihood function is as
follows

p(DLn |M1,θ1, t) = p(DL−n+tt |θ11) p(Dn−tn |θ21) (2)

where θ1 = (θ
1
1 θ
2
1)
T – parameters of M1, θ11 are parameters for

partition before context change, and θ21 – parameters after context
change.

9/23

Bayesian approach
Model evidence

In order to select one model which is more probable to generate observed
data we need to calculate model evidences. The model evidence of M0
can be calculated as follows

10/23

Bayesian approach
Model evidence

In order to select one model which is more probable to generate observed
data we need to calculate model evidences. The model evidence of M0
can be calculated as follows

p(DLn |M0) =
∫
p(DLn |M0,θ0) p(θ0|M0) dθ0, (3)

where p(θ0|M0) – a priori probability distribution of parameters.

10/23

Bayesian approach
Model evidence

In order to select one model which is more probable to generate observed
data we need to calculate model evidences. The model evidence of M0
can be calculated as follows

p(DLn |M0) =
∫
p(DLn |M0,θ0) p(θ0|M0) dθ0, (3)

where p(θ0|M0) – a priori probability distribution of parameters. Next,
the model evidence of M1 is the following (using the independence of
θ11,θ

2
1, t)

p(DLn |M1) =
x

p(DLn |M1,θ1, t) p(θ
1
1|M1)×

× p(θ21|M1) p(t|M1) dθ1 dt, (4)

where p(θ11|M1), p(θ
2
1|M1), p(t|M1) – a priori probability distributions

of parameters.

10/23

Bayesian approach
Model evidence approximation

In order to calculate model evidences of M0 and M1 we make the
following assumptions:

 the a priori probability distributions of θ0 and θ1 are taken to be
non-informative;

 the context change occurs in the middle of the shifting window, i.e.,
n− d 12Le, hence the a priori probability distribution of t is a Dirac
delta function in the point n− d 12Le.

11/23

Bayesian approach
Model evidence approximation

In order to calculate model evidences of M0 and M1 we make the
following assumptions:
 the a priori probability distributions of θ0 and θ1 are taken to be

non-informative;

 the context change occurs in the middle of the shifting window, i.e.,
n− d 12Le, hence the a priori probability distribution of t is a Dirac
delta function in the point n− d 12Le.

11/23

Bayesian approach
Model evidence approximation

In order to calculate model evidences of M0 and M1 we make the
following assumptions:
 the a priori probability distributions of θ0 and θ1 are taken to be

non-informative;
 the context change occurs in the middle of the shifting window, i.e.,
n− d 12Le, hence the a priori probability distribution of t is a Dirac
delta function in the point n− d 12Le.

11/23

Bayesian approach
Model evidence approximation

In order to calculate model evidences of M0 and M1 we make the
following assumptions:
 the a priori probability distributions of θ0 and θ1 are taken to be

non-informative;
 the context change occurs in the middle of the shifting window, i.e.,
n− d 12Le, hence the a priori probability distribution of t is a Dirac
delta function in the point n− d 12Le.

For such assumptions we can approximate the model evidence by the
Bayesian Information Criterion (BIC)

ln p(DLn |M) ≈ ln p(DLn |θ̂)−
K

2
lnL, (5)

where θ̂ is the maximum likelihood estimator of θ.

11/23

Bayesian approach
Bayes factor

To compare both models, we calculate the Bayes factor (assuming equal
probabilities over models):

B10 =
p(DLn |M1)
p(DLn |M0)

. (6)

B10 ln(B10) Evidence in favor of M1
1− 3 0− 1.1 Weak
3− 10 1.1− 2.3 Substantial
10− 100 2.3− 4.6 Strong
> 100 > 4.6 Decisive

12/23

Algorithm description
Approximate Bayesian Model Comparison for Change Detection in Web Service Systems 5

and

ln p(DL
n |M0) ⇡

KX

k=1

(j1
k ln ✓̂1

1,k +j2
k ln ✓̂2

1,k)�K ln L. (16)

Finally, we can the approximation of the Bayes fac-
tor (13) using (15) and (16), i.e.,

ln B10 ⇡
KX

k=1

(j1
k ln ✓̂1

1,k+j2
k ln ✓̂2

1,k)�
KX

k=1

jk ln ✓̂0,k�
K

2
ln L.

(17)

2.4 Change detection algorithm

Having an analytic form of the approximated Bayes fac-

tor we are able to select one of the two considered mod-
els, i.e., one with no context change and the other with
one context change. In other words, the selected model

indicate if the context changed occurred in the shift-
ing window DL

n or not. Therefore, we can propose an
on-line algorithm for change detection. The idea is as

follows. Move shifting window, next calculate the model
evidences (15) and (16) using DL

n . Then calculate the
approximated Bayes factor using (17). The final step
is to report the context change if the Bayes factor is

greater than a given value � 2 R+ called a sensitiv-
ity parameter. If the value of the sensitivity parameter
is greater, the stronger evidence we want to select the

model M1. In other words, the value of � denotes the
sensitivity to the value of the Bayes factor. However,
the determination of the � plays a crucial role in the
proposed approach and may be seen as [14]:

”(...) a compromise between detecting true changes
and avoiding false alarms.”

Nevertheless, we can use the Je↵rey’s interpretation to
determine the value of the sensitivity parameter (see

Table 1).

Let us denote a sequence of context change detec-

tions by ⌧ , and d·e – a ceil function. The final procedure
of the change detection is presented in Algorithm 2.

Remarks to Algorithm 2:

1. If N < L, then we take all observations from n = 1
to L.

2. If a change is detected, then no further change is
reported till the shifting window does not contain

the (N � dL/2e)th observation (lines 6–11).
3. Because of the assumptions, the true context change

is in the middle of the shifting window, N � dL/2e.
4. The proposed algorithm works as long as new ob-

servations arrive (line 2).

Algorithm 1: Change detection using approxi-
mated Bayes factor

Input : D, L, M0, M1

Output: Moments of context change ⌧1, . . . , ⌧M

1 n � 1, m � 0, ⌧0 � 0;
2 while n < card{D} do
3 Calculate ln p(DL

n |M0) and ln p(DL
n |M1) ;

4 Calculate ln B10;
5 if ln B10 > � then
6 if

�
(n� dL/2e)� ⌧m

�
> dL/2e then

7 m := m + 1;
8 ⌧m � n� dL/2e;
9 end

10 end
11 n := n + 1;

12 end

Algorithm 2: Change detection using approxi-
mated Bayes factor

Input : D, L, M0, M1, �, m := 1, ⌧1 := 1
Output: Moments of context change ⌧1, . . . , ⌧M

1 n � 1, m � 0, ⌧0 � 0;
2 while n < card{D} do

3 ln p(DL
n |M0) �P

k jk ln ✓̂0,k � K
2

ln L;

4 ln p(DL
n |M1) �P

k(j1k ln ✓̂11,k + j2k ln ✓̂21,k)�K ln L;

5 ln B10 � ln p(DL
n |M1)� ln p(DL

n |M0);
6 if ln B10 > � then
7 if

�
(n� dL/2e)� ⌧m

�
> dL/2e then

8 m := m + 1;
9 ⌧m � n� dL/2e;

10 end

11 end

12 end

5. The computational complexity of Algorithm 2 is

proportional to the size of the shifting window, i.e.,
O(L). In order to calculate the model evidences we
need to have the numbers of occurrences of xk which
require to read all values of L observations in the

shifting window once only.

3 Experiments

The purpose of this experiment is examine the qual-
ity of change detection algorithms which use frequentist

and Bayesian models. We take under consideration web
service execution environment and average latency of
services’ responses in the system as a time characteristic
used for change detection. To reflect the nature of real

web service execution system we propose simulation
model designed in discrete events simulation environ-
ment Arena [3]. The simplified simulation model is pre-

sented in Fig. 2. The model consists of following com-
ponents: (i) request generator, which imitates client’s

13/23

Simulator
Structure

&RPSXWDWLRQDO�XQLW

9LUWXDO�PDFKLQH

:HE�VHUYLFH

:HE�VHUYLFH

9LUWXDO�PDFKLQH

:HE�VHUYLFH

:HE�VHUYLFH

5HTXHVW�
JHQHUDWRU 6FKHGXOHU 6LQN

&RPSXWDWLRQDO�
XQLW

&RPSXWDWLRQDO�
XQLW

14/23

Simulator
Details

 Streams of requests are generated with Poisson process.

 Computational nodes are represented by web servers with
processors as computational resources.

 Two virtual machines are situated on each of servers.

 Each of two web servers in the model uses 8 processors, which are
assigned to virtual machines in following way:

 6 and 2 processors are respectively used by first and second virtual
machine (first server).

 4 and 4 processors are respectively used by first and second virtual
machine (second server).

 Processing delays for web servers are equal 0.0004 seconds and for
virtual machines are equal 0.0008 seconds
According to the technical report: Lite Technologies, Web server performance comparison: Litespeed 2.0 vs..

15/23

Simulator
Details

 Streams of requests are generated with Poisson process.

 Computational nodes are represented by web servers with
processors as computational resources.

 Two virtual machines are situated on each of servers.

 Each of two web servers in the model uses 8 processors, which are
assigned to virtual machines in following way:

 6 and 2 processors are respectively used by first and second virtual
machine (first server).

 4 and 4 processors are respectively used by first and second virtual
machine (second server).

 Processing delays for web servers are equal 0.0004 seconds and for
virtual machines are equal 0.0008 seconds
According to the technical report: Lite Technologies, Web server performance comparison: Litespeed 2.0 vs..

15/23

Simulator
Details

 Streams of requests are generated with Poisson process.

 Computational nodes are represented by web servers with
processors as computational resources.

 Two virtual machines are situated on each of servers.

 Each of two web servers in the model uses 8 processors, which are
assigned to virtual machines in following way:

 6 and 2 processors are respectively used by first and second virtual
machine (first server).

 4 and 4 processors are respectively used by first and second virtual
machine (second server).

 Processing delays for web servers are equal 0.0004 seconds and for
virtual machines are equal 0.0008 seconds
According to the technical report: Lite Technologies, Web server performance comparison: Litespeed 2.0 vs..

15/23

Simulator
Details

 Streams of requests are generated with Poisson process.

 Computational nodes are represented by web servers with
processors as computational resources.

 Two virtual machines are situated on each of servers.

 Each of two web servers in the model uses 8 processors, which are
assigned to virtual machines in following way:

 6 and 2 processors are respectively used by first and second virtual
machine (first server).

 4 and 4 processors are respectively used by first and second virtual
machine (second server).

 Processing delays for web servers are equal 0.0004 seconds and for
virtual machines are equal 0.0008 seconds
According to the technical report: Lite Technologies, Web server performance comparison: Litespeed 2.0 vs..

15/23

Simulator
Details

 Streams of requests are generated with Poisson process.

 Computational nodes are represented by web servers with
processors as computational resources.

 Two virtual machines are situated on each of servers.

 Each of two web servers in the model uses 8 processors, which are
assigned to virtual machines in following way:

 6 and 2 processors are respectively used by first and second virtual
machine (first server).

 4 and 4 processors are respectively used by first and second virtual
machine (second server).

 Processing delays for web servers are equal 0.0004 seconds and for
virtual machines are equal 0.0008 seconds
According to the technical report: Lite Technologies, Web server performance comparison: Litespeed 2.0 vs..

15/23

Simulator
Details

 Streams of requests are generated with Poisson process.

 Computational nodes are represented by web servers with
processors as computational resources.

 Two virtual machines are situated on each of servers.

 Each of two web servers in the model uses 8 processors, which are
assigned to virtual machines in following way:

 6 and 2 processors are respectively used by first and second virtual
machine (first server).

 4 and 4 processors are respectively used by first and second virtual
machine (second server).

 Processing delays for web servers are equal 0.0004 seconds and for
virtual machines are equal 0.0008 seconds
According to the technical report: Lite Technologies, Web server performance comparison: Litespeed 2.0 vs..

15/23

Simulator
Details

 Streams of requests are generated with Poisson process.

 Computational nodes are represented by web servers with
processors as computational resources.

 Two virtual machines are situated on each of servers.

 Each of two web servers in the model uses 8 processors, which are
assigned to virtual machines in following way:

 6 and 2 processors are respectively used by first and second virtual
machine (first server).

 4 and 4 processors are respectively used by first and second virtual
machine (second server).

 Processing delays for web servers are equal 0.0004 seconds and for
virtual machines are equal 0.0008 seconds
According to the technical report: Lite Technologies, Web server performance comparison: Litespeed 2.0 vs..

15/23

Simulator
Modelling Web services

 Performance of real data processing services implemented in PlaTel
was modelled: Naive Bayes, Logistic Regression, J48 and
Multilayer Perceptron.

 Processing time for each of selected services was modelled with
triangular distribution.

 The values parameters for distributions (minimum, maximum and
average value) for each of services were estimated using soapUI
tool.

 Following resource allocation of web services were proposed:

 Multilayer Perceptron - total number of 10 processors.
 Logistic Regression total number of 10 processors.
 J48 total number of 6 processors.
 Naive Bayes total number of 4 processors.

16/23

Simulator
Modelling Web services

 Performance of real data processing services implemented in PlaTel
was modelled: Naive Bayes, Logistic Regression, J48 and
Multilayer Perceptron.

 Processing time for each of selected services was modelled with
triangular distribution.

 The values parameters for distributions (minimum, maximum and
average value) for each of services were estimated using soapUI
tool.

 Following resource allocation of web services were proposed:

 Multilayer Perceptron - total number of 10 processors.
 Logistic Regression total number of 10 processors.
 J48 total number of 6 processors.
 Naive Bayes total number of 4 processors.

16/23

Simulator
Modelling Web services

 Performance of real data processing services implemented in PlaTel
was modelled: Naive Bayes, Logistic Regression, J48 and
Multilayer Perceptron.

 Processing time for each of selected services was modelled with
triangular distribution.

 The values parameters for distributions (minimum, maximum and
average value) for each of services were estimated using soapUI
tool.

 Following resource allocation of web services were proposed:

 Multilayer Perceptron - total number of 10 processors.
 Logistic Regression total number of 10 processors.
 J48 total number of 6 processors.
 Naive Bayes total number of 4 processors.

16/23

Simulator
Modelling Web services

 Performance of real data processing services implemented in PlaTel
was modelled: Naive Bayes, Logistic Regression, J48 and
Multilayer Perceptron.

 Processing time for each of selected services was modelled with
triangular distribution.

 The values parameters for distributions (minimum, maximum and
average value) for each of services were estimated using soapUI
tool.

 Following resource allocation of web services were proposed:

 Multilayer Perceptron - total number of 10 processors.
 Logistic Regression total number of 10 processors.
 J48 total number of 6 processors.
 Naive Bayes total number of 4 processors.

16/23

Simulator
Modelling Web services

 Performance of real data processing services implemented in PlaTel
was modelled: Naive Bayes, Logistic Regression, J48 and
Multilayer Perceptron.

 Processing time for each of selected services was modelled with
triangular distribution.

 The values parameters for distributions (minimum, maximum and
average value) for each of services were estimated using soapUI
tool.

 Following resource allocation of web services were proposed:

 Multilayer Perceptron - total number of 10 processors.

 Logistic Regression total number of 10 processors.
 J48 total number of 6 processors.
 Naive Bayes total number of 4 processors.

16/23

Simulator
Modelling Web services

 Performance of real data processing services implemented in PlaTel
was modelled: Naive Bayes, Logistic Regression, J48 and
Multilayer Perceptron.

 Processing time for each of selected services was modelled with
triangular distribution.

 The values parameters for distributions (minimum, maximum and
average value) for each of services were estimated using soapUI
tool.

 Following resource allocation of web services were proposed:

 Multilayer Perceptron - total number of 10 processors.
 Logistic Regression total number of 10 processors.

 J48 total number of 6 processors.
 Naive Bayes total number of 4 processors.

16/23

Simulator
Modelling Web services

 Performance of real data processing services implemented in PlaTel
was modelled: Naive Bayes, Logistic Regression, J48 and
Multilayer Perceptron.

 Processing time for each of selected services was modelled with
triangular distribution.

 The values parameters for distributions (minimum, maximum and
average value) for each of services were estimated using soapUI
tool.

 Following resource allocation of web services were proposed:

 Multilayer Perceptron - total number of 10 processors.
 Logistic Regression total number of 10 processors.
 J48 total number of 6 processors.

 Naive Bayes total number of 4 processors.

16/23

Simulator
Modelling Web services

 Performance of real data processing services implemented in PlaTel
was modelled: Naive Bayes, Logistic Regression, J48 and
Multilayer Perceptron.

 Processing time for each of selected services was modelled with
triangular distribution.

 The values parameters for distributions (minimum, maximum and
average value) for each of services were estimated using soapUI
tool.

 Following resource allocation of web services were proposed:

 Multilayer Perceptron - total number of 10 processors.
 Logistic Regression total number of 10 processors.
 J48 total number of 6 processors.
 Naive Bayes total number of 4 processors.

16/23

Experiment
Description

 The aim of the experiment is to compare the performance of
frequentist approaches with Bayesian approach for change detection
problem.

 Following dissimilarity measures were considered:

 Bhattacharyya
 Kullback-Leibler
 Lin-Wong
 modified Lin-Wong

 Average latency in request responses was considered as a quality
rate for entire system.

 The simulation model was implemented in discrete events simulation
environment Arena.

 Algorithms for change detection were implemented in Matlab.

17/23

Experiment
Description

 The aim of the experiment is to compare the performance of
frequentist approaches with Bayesian approach for change detection
problem.

 Following dissimilarity measures were considered:

 Bhattacharyya
 Kullback-Leibler
 Lin-Wong
 modified Lin-Wong

 Average latency in request responses was considered as a quality
rate for entire system.

 The simulation model was implemented in discrete events simulation
environment Arena.

 Algorithms for change detection were implemented in Matlab.

17/23

Experiment
Description

 The aim of the experiment is to compare the performance of
frequentist approaches with Bayesian approach for change detection
problem.

 Following dissimilarity measures were considered:

 Bhattacharyya

 Kullback-Leibler
 Lin-Wong
 modified Lin-Wong

 Average latency in request responses was considered as a quality
rate for entire system.

 The simulation model was implemented in discrete events simulation
environment Arena.

 Algorithms for change detection were implemented in Matlab.

17/23

Experiment
Description

 The aim of the experiment is to compare the performance of
frequentist approaches with Bayesian approach for change detection
problem.

 Following dissimilarity measures were considered:

 Bhattacharyya
 Kullback-Leibler

 Lin-Wong
 modified Lin-Wong

 Average latency in request responses was considered as a quality
rate for entire system.

 The simulation model was implemented in discrete events simulation
environment Arena.

 Algorithms for change detection were implemented in Matlab.

17/23

Experiment
Description

 The aim of the experiment is to compare the performance of
frequentist approaches with Bayesian approach for change detection
problem.

 Following dissimilarity measures were considered:

 Bhattacharyya
 Kullback-Leibler
 Lin-Wong

 modified Lin-Wong

 Average latency in request responses was considered as a quality
rate for entire system.

 The simulation model was implemented in discrete events simulation
environment Arena.

 Algorithms for change detection were implemented in Matlab.

17/23

Experiment
Description

 The aim of the experiment is to compare the performance of
frequentist approaches with Bayesian approach for change detection
problem.

 Following dissimilarity measures were considered:

 Bhattacharyya
 Kullback-Leibler
 Lin-Wong
 modified Lin-Wong

 Average latency in request responses was considered as a quality
rate for entire system.

 The simulation model was implemented in discrete events simulation
environment Arena.

 Algorithms for change detection were implemented in Matlab.

17/23

Experiment
Description

 The aim of the experiment is to compare the performance of
frequentist approaches with Bayesian approach for change detection
problem.

 Following dissimilarity measures were considered:

 Bhattacharyya
 Kullback-Leibler
 Lin-Wong
 modified Lin-Wong

 Average latency in request responses was considered as a quality
rate for entire system.

 The simulation model was implemented in discrete events simulation
environment Arena.

 Algorithms for change detection were implemented in Matlab.

17/23

Experiment
Description

 The aim of the experiment is to compare the performance of
frequentist approaches with Bayesian approach for change detection
problem.

 Following dissimilarity measures were considered:

 Bhattacharyya
 Kullback-Leibler
 Lin-Wong
 modified Lin-Wong

 Average latency in request responses was considered as a quality
rate for entire system.

 The simulation model was implemented in discrete events simulation
environment Arena.

 Algorithms for change detection were implemented in Matlab.

17/23

Experiment
Description

 The aim of the experiment is to compare the performance of
frequentist approaches with Bayesian approach for change detection
problem.

 Following dissimilarity measures were considered:

 Bhattacharyya
 Kullback-Leibler
 Lin-Wong
 modified Lin-Wong

 Average latency in request responses was considered as a quality
rate for entire system.

 The simulation model was implemented in discrete events simulation
environment Arena.

 Algorithms for change detection were implemented in Matlab.

17/23

Experiment
Considered scenarios (1)

1. Slight context change. The
context is changed periodically (5
times per simulation) and change is
gained by increasing the intensity
parameters of Poisson process three
times.

2. Significant context change. The
context is changed periodically (5
times per simulation) and change is
gained by increasing the intensity
parameters of Poisson process six
times.

18/23

Experiment
Considered scenarios (2)

3. Processors failure (anomaly).
Anomaly is gained by failure of 4
processors on first virtual machine.

19/23

Experiment
Results for slight context change simulation

Correctly Incorrectly
detected detected

Measure (max. 5)

Bhattacharyya
(L = 25, σ = 0.2) 3.2 0.2
Kullback-Leibler
(L = 25, σ = 1) 3.8 0.8
Lin-Wong
(L = 25, σ = 0.15) 2.8 0.7
mod. Lin-Wong
(L = 25, σ = 0.02) 2.9 0.9

Bayesian approach
(L = 25) 3 0.2

20/23

Experiment
Results for significant context change simulation

Correctly Incorrectly
detected detected

Measure (max. 5)

Bhattacharyya
(L = 25, σ = 0.2) 4.6 0.1
Kullback-Leibler
(L = 25, σ = 1) 4.8 0.2
Lin-Wong
(L = 25, σ = 0.15) 4.6 0.3
mod. Lin-Wong
(L = 25, σ = 0.02) 4.6 0.2

Bayesian approach
(L = 25) 5 0

21/23

Experiment
Results for processors failure simulation

Correctly Incorrectly
detected detected

Measure (max. 2)

Bhattacharyya
(L = 25, σ = 0.2) 1 0.3
Kullback-Leibler
(L = 25, σ = 1) 0.7 0.3
Lin-Wong
(L = 25, σ = 0.15) 1.1 0.1
mod. Lin-Wong
(L = 25, σ = 0.02) 1 0.1

Bayesian approach
(L = 25) 1.1 0.1

22/23

Discussion

 Most of changes were successfully detected using frequentist and
Bayesian approaches.

 The lowest number of detected changes were gained for Slight
context change and Processors failure simulation scenarios.

 Bayesian approach performed slightly better for Significant context
change and Processors failure (anomaly) scenarios.

 The number of incorrectly detected changes using Bayesian model
was the lowest for all considered scenarios.

 The best results for slight context changes were gained using
Bhattacharyya measure.

 Bayesian approach, in comparison to the frequentist approach, does
not demand defining additional parameters beside shifting window’s
size.

23/23

Discussion

 Most of changes were successfully detected using frequentist and
Bayesian approaches.

 The lowest number of detected changes were gained for Slight
context change and Processors failure simulation scenarios.

 Bayesian approach performed slightly better for Significant context
change and Processors failure (anomaly) scenarios.

 The number of incorrectly detected changes using Bayesian model
was the lowest for all considered scenarios.

 The best results for slight context changes were gained using
Bhattacharyya measure.

 Bayesian approach, in comparison to the frequentist approach, does
not demand defining additional parameters beside shifting window’s
size.

23/23

Discussion

 Most of changes were successfully detected using frequentist and
Bayesian approaches.

 The lowest number of detected changes were gained for Slight
context change and Processors failure simulation scenarios.

 Bayesian approach performed slightly better for Significant context
change and Processors failure (anomaly) scenarios.

 The number of incorrectly detected changes using Bayesian model
was the lowest for all considered scenarios.

 The best results for slight context changes were gained using
Bhattacharyya measure.

 Bayesian approach, in comparison to the frequentist approach, does
not demand defining additional parameters beside shifting window’s
size.

23/23

Discussion

 Most of changes were successfully detected using frequentist and
Bayesian approaches.

 The lowest number of detected changes were gained for Slight
context change and Processors failure simulation scenarios.

 Bayesian approach performed slightly better for Significant context
change and Processors failure (anomaly) scenarios.

 The number of incorrectly detected changes using Bayesian model
was the lowest for all considered scenarios.

 The best results for slight context changes were gained using
Bhattacharyya measure.

 Bayesian approach, in comparison to the frequentist approach, does
not demand defining additional parameters beside shifting window’s
size.

23/23

Discussion

 Most of changes were successfully detected using frequentist and
Bayesian approaches.

 The lowest number of detected changes were gained for Slight
context change and Processors failure simulation scenarios.

 Bayesian approach performed slightly better for Significant context
change and Processors failure (anomaly) scenarios.

 The number of incorrectly detected changes using Bayesian model
was the lowest for all considered scenarios.

 The best results for slight context changes were gained using
Bhattacharyya measure.

 Bayesian approach, in comparison to the frequentist approach, does
not demand defining additional parameters beside shifting window’s
size.

23/23

Discussion

 Most of changes were successfully detected using frequentist and
Bayesian approaches.

 The lowest number of detected changes were gained for Slight
context change and Processors failure simulation scenarios.

 Bayesian approach performed slightly better for Significant context
change and Processors failure (anomaly) scenarios.

 The number of incorrectly detected changes using Bayesian model
was the lowest for all considered scenarios.

 The best results for slight context changes were gained using
Bhattacharyya measure.

 Bayesian approach, in comparison to the frequentist approach, does
not demand defining additional parameters beside shifting window’s
size.

23/23

